Ventilatory effects of specific carotid body hypocapnia and hypoxia in awake dogs.
نویسندگان
چکیده
Specific carotid body (CB) hypocapnia in the-10-Torr (less than eupneic) range reduced ventilation in the awake and sleeping dog to the same degree as did CB hyperoxia [CB PO2 (PCBO2); > 500 Torr; C.A. Smith, K.W. Saupe, K. S. Henderson, and J. A. Dempsey. J. Appl. Physiol. 79:689-699, 1995], suggesting a powerful inhibitory effect of hypocapnia at the carotid chemosensor over a range of PCO2 encountered commonly in physiological hyperpneas. The primary purpose of this study was to assess the ventilatory effect of CB hypocapnia on the ventilatory response to concomitant CB hypoxia. The secondary purpose was to assess the relative gains of the CB and central chemoreceptors to hypocapnia. In eight awake female dogs the vascularly isolated CB was perfused with hypoxic blood (mild, PCBO2 approximately equal to 50 Torr or severe, PCBO2 approximately equal to 36 Torr) in a background of normocapnia or hypocapnia (10 Torr less than eupneic arterial PCO2) in the perfusate. The systemic (and brain) circulation was normoxic throughout, and arterial PCO2 was not controlled (poikilocapnia). With CB hypocapnia, the peak ventilation (range 19-27 s) in response to hypoxic CB perfusion increased 48% (mild) and 77% (severe) due to increased tidal volume. When CB hypocapnia was present, these increases in ventilation were reduced to 21 and 27%, respectively. With systemic hypocapnia, with the isolated CB maintained normocapnic and hypoxic for > 70 s, the steady-state poikilocapnic ventilatory response (i.e., to systemic hypocapnia alone) decreased 15% (mild CB hypoxia) and 27% (severe CB hypoxia) from the peak response, respectively. We conclude that carotid body hypocapnia can be a major source of inhibitory feedback to respiratory motor output during the hyperventilatory response to hypoxic carotid body stimulation.
منابع مشابه
Ventilatory responses to specific CNS hypoxia in sleeping dogs.
Our study was concerned with the effect of brain hypoxia on cardiorespiratory control in the sleeping dog. Eleven unanesthetized dogs were studied; seven were prepared for vascular isolation and extracorporeal perfusion of the carotid body to assess the effects of systemic [and, therefore, central nervous system (CNS)] hypoxia (arterial PO(2) = 52, 45, and 38 Torr) in the presence of a normocap...
متن کاملCarotid body denervation eliminates apnea in response to transient hypocapnia.
We determined the effects on breathing of transient ventilatory overshoots and concomitant hypocapnia, as produced by pressure support mechanical ventilation (PSV), in intact and carotid body chemoreceptor denervated (CBX) sleeping dogs. In the intact dog, PSV-induced transient increases in tidal volume and hypocapnia caused apnea within 10-11 s, followed by repetitive two-breath clusters separ...
متن کاملVentilatory response to sustained hypoxia in carotid body denervated rats.
Hypoxia stimulates ventilation, but when it is sustained, a decline in the ventilatory response is seen. The mechanism responsible for this decline lies within the CNS, but still remains unknown. In this study, we attempted to elucidate the possible role of hypoxia-induced depression of respiratory neurons by comparing the ventilatory response to hypoxia in intact rats and those with denervated...
متن کاملPeripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2 : role of carotid body CO2.
We asked if the type of carotid body (CB) chemoreceptor stimulus influenced the ventilatory gain of the central chemoreceptors to CO2 . The effect of CB normoxic hypocapnia, normocapnia and hypercapnia (carotid body PCO2 ≈ 22, 41 and 68 mmHg, respectively) on the ventilatory CO2 sensitivity of central chemoreceptors was studied in seven awake dogs with vascularly-isolated and extracorporeally-p...
متن کاملChronic hypoxia increases the gain of the hypoxic ventilatory response by a mechanism in the central nervous system.
We studied the effects of the ventilatory stimulant doxapram to test the hypothesis that chronic hypoxia increases the translation of carotid body afferent input into ventilatory motor efferent output by the central nervous system. Chronic hypoxia (inspired Po(2) = 70 Torr, 2 days) significantly increased the ventilatory response to an intravenous infusion of a high dose of doxapram in consciou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 82 3 شماره
صفحات -
تاریخ انتشار 1997